Human activity recognition with smartphone sensors using deep learning neural networks
نویسندگان
چکیده
Human activities are inherently translation invariant and hierarchical. Human activity recognition (HAR), a field that has garnered a lot of attention in recent years due to its high demand in various application domains, makes use of time-series sensor data to infer activities. In this paper, a deep convolutional neural network (convnet) is proposed to perform efficient and effective HAR using smartphone sensors by exploiting the inherent characteristics of activities and 1D time-series signals, at the same time providing a way to automatically and data-adaptively extract robust features from raw data. Experiments show that convnets indeed derive relevant and more complex features with every additional layer, although difference of feature complexity level decreases with every additional layer. A wider time span of temporal local correlation can be exploited (1 ×9–1 ×14) and a low pooling size (1 ×2–1 ×3) is shown to be beneficial. Convnets also achieved an almost perfect classification on moving activities, especially very similar ones which were previously perceived to be very difficult to classify. Lastly, convnets outperform other state-of-the-art data mining techniques in HAR for the benchmark dataset collected from 30 volunteer subjects, achieving an overall performance of 94.79% on the test set with raw sensor data, and 95.75% with additional information of temporal fast Fourier transform of the HAR data set. © 2016 Published by Elsevier Ltd.
منابع مشابه
Deep Convolutional Neural Networks for Human Activity Recognition with Smartphone Sensors
Human activity recognition (HAR) using smartphone sensors utilize time-series, multivariate data to detect activities. Time-series data have inherent local dependency characteristics. Moreover, activities tend to be hierarchical and translation invariant in nature. Consequently, convolutional neural networks (convnet) exploit these characteristics, which make it appropriate in dealing with time...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملDeep Recurrent Neural Networks for Human Activity Recognition
Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convol...
متن کاملAcctionNet: A Dataset Of Human Activity Recognition Using On-phone Motion Sensors
Smartphones have become ubiquitous in modern society. With almost everyone carrying a smartphone in their pocket, the availability of sensor data (accelerometer, gyroscope, etc.) has sky rocketed. How we can use all this sensor data to benefit smartphone users remains an open problem. We present a new human activity recognition dataset, AcctionNet, we hope provides one avenue to explore this we...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 59 شماره
صفحات -
تاریخ انتشار 2016